Prediction index drought use neural network based rainfall
Abstract
Prolonged dry seasons compared to rainy seasons often lead to drought, making drought index observations essential. In Indonesia, drought monitoring commonly uses the standardized precipitation index (SPI), yet there is no common standard for drought index measurement. Therefore, this research applies the Z-score index (ZSI) and China-Z index (CZI), which, like SPI, are rainfall-based drought indices but have rarely been explored in previous research. To predict ZSI and CZI, this research compares the weighted moving average (WMA) and multilayer perceptron (MLP) methods. Two input scenarios are tested: the previous two periods (t-2, t-1) and the previous three periods (t-3, t-2, t-1). The results show that MLP outperforms WMA, with the best performance achieved by the MLP model at a mean absolute percentage error (MAPE) of 4.177% using the three variable input scenario and MLP architecture 3-6-10-1.
Full Text:
PDFDOI: http://doi.org/10.11591/ijaas.v14.i4.pp1146-1154
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nur Nafiiyah, Ali Mokhtar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View the IJAAS Visitor Statistics
International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by Intelektual Pustaka Media Utama (IPMU) in collaboration with the Institute of Advanced Engineering and Science (IAES).