Stacking architecture-endpoint detection: a hybrid multi layered architecture for endpoint threat detection

Abd Rahman Wahid, Desi Anggreani, Muhyiddin A. M. Hayat, Aedah Abd Rahman, Muhammad Faisal

Abstract


Modern endpoint threat detection systems face persistent challenges in balancing detection accuracy, resilience against zero-day attacks, and the interpretability of artificial intelligence (AI) models. Although deep learning (DL) approaches often achieve high accuracy on benchmark datasets, they remain vulnerable to adversarial perturbations and operate as opaque “black boxes,” thereby reducing trust and limiting practical adoption in critical infrastructures. This research introduces stacking architecture-endpoint detection (STACK-ED), a hybrid multi-layered architecture for endpoint threat detection. STACK-ED integrates three complementary paradigms: supervised learning for known attack patterns, self-supervised Fgraph-based learning for structural relationships, and unsupervised anomaly detection for emerging or unknown threats. The outputs are consolidated by a meta learner, followed by a post-hoc correction (PHC) mechanism to minimize false negatives. The framework was evaluated on a combined benchmark dataset (CSE-CIC-IDS2018 and UNSW-NB15, hereafter referred to as HIDS-Set). Experimental results demonstrate state-of-the-art performance, achieving an F2-score of 98.89% after hybrid integration and active learning, with the primary optimization objective being the reduction of undetected attacks. Furthermore, the Shapley additive explanations (SHAP) method enhances interpretability by revealing feature contributions, while the PHC successfully recovered 62.64% of missed zero-day candidates. The findings position STACK-ED not only as a highly accurate detection model but also as an adaptive, resilient, and transparent framework, offering practical implications for enterprise-grade endpoint defense and future zero-trust cybersecurity systems.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijaas.v14.i4.pp1263-1280

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Abd Rahman Wahid, Desi Anggreani, Muhyiddin A. M. Hayat, Aedah Abd Rahman, Muhammad Faisal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View the IJAAS Visitor Statistics

International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by Intelektual Pustaka Media Utama (IPMU) in collaboration with the Institute of Advanced Engineering and Science (IAES).