A review on ischemic heart disease prediction frameworks using machine learning

Kabo Clifford Bhende, Tshiamo Sigwele, Chandapiwa Mokgethi, Aone Maenge, Venu Madhav Kuthadi

Abstract


Ischemic heart disease (IHD) is a leading cause of mortality worldwide, calling for advanced predictive models for timely intervention. Current literature reviews on machine learning (ML)-based IHD prediction frameworks often focus on predictive accuracy but lack depth in areas like dataset diversity, model interpretability, and privacy considerations. Existing IHD prediction frameworks face limitations, including reliance on small, homogenous datasets, limited critical analysis, and issues with model transparency, reducing their clinical utility. This review addresses these gaps through a systematic, comparative analysis of popular ML models, such as random forest (RF) and support vector machines (SVM), noting their strengths and limitations. Key contributions include a qualitative examination of prevalent tools, datasets, and evaluation metrics, identification of gaps in dataset diversity and interpretability; and recommendations for improving model transparency and data privacy. Major findings reveal a trend toward ensemble models for accuracy but highlight the need for explainable artificial intelligence (AI) to support clinical decisions. Future directions include using federated learning to enhance data privacy, integrating unstructured data for comprehensive prediction, and advancing explainable AI to build trust among healthcare providers. By addressing these areas, this review aims to guide future research toward developing robust, transparent ML frameworks that can be more effectively deployed in clinical settings.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijaas.v14.i2.pp361-372

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Intelektual Pustaka Media Utama (IPMU)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View the IJAAS Visitor Statistics

International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by Intelektual Pustaka Media Utama (IPMU) in collaboration with the Institute of Advanced Engineering and Science (IAES).