Kinetic study and simulation of molybdenum borides for hydrogen evolution reaction

Harunal Rejan Ramji, Muhammad Qhaliff Zainal Ibidin, Nicolas Glandut, Joseph Absi, Lim Soh Fong

Abstract


This paper presented the kinetic study of molybdenum borides via the Volmer-Heyrovsky-Tafel (V-H-T) mechanistic steps for hydrogen evolution reaction (HER). A theoretical approach was carried out to investigate the kinetic properties of several molybdenum boride materials for HER in 0.5 M H2SO4. Our findings offer definitive proof that the simulated results show that B, Mo, Mo2B, and α-MoB, proceed through V-H mechanistic steps (slower kinetics) while β-MoB and MoB2 exhibit V-H-T mechanistic steps with higher kinetics. The kinetic parameters were determined in terms of the standard rate constant parameters for the Volmer step (kV, k-V), Heyrovsky step (kH, k-H), and rate constant for the Tafel step (kT, k-T). The simulation was able to predict the overpotential at 10 mA/cm2, η10 recorded at approximately 780, 585, 480, 350, 310, and 300 mV for B, Mo, Mo2B, α-MoB, β-MoB, and MoB2 respectively. Based on these findings, the adopted mathematical model shows good coherency to the experimental findings. The simulation work provides a good numerical estimation of the characteristics of the electrocatalyst for HER. This paper successfully elucidated the reaction mechanisms (V-H-T steps) and understood the rate-limiting steps involved in the HER process on Mo-B materials.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijaas.v13.i3.pp698-706

Refbacks

  • There are currently no refbacks.


International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Web Analytics View IJAAS Stats