Forecasting internet traffic patterns for the campus Metro-E network using a hybrid machine learning model

Norakmar Arbain, Murizah Kassim, Darmawaty Mohd Ali, Shuria Saaidin

Abstract


Complex traffic patterns lead to crucial campus Metro-E network management and resource allocation. This paper presents an internet traffic forecasting by pre-processing data to offer better bandwidth quality of service (QoS). Eight (8) campuses' traffic data were analysed for modelling predictions using statistical analysis. A Metro-E campus network presents four (4) locations: A, E, F, and H have is a strong correlation between inbound and outbound traffic, with correlation values between 0.4547 and 0.5204. As the inbound traffic increases, outbound traffic tends to rise as well. Conversely, locations B, C, and G have weak correlations, indicating more independent traffic patterns. Data outliers were found for locations C and F, where unusual traffic spikes require further network exploration and show key trends in traffic data. Descriptive statistics reveal notable differences, with H has the highest average traffic at about 75 Mbps, while C has the lowest at around 30 Mbps. Location F shows the greatest traffic fluctuation with a standard deviation of 0.4076, whereas Location G has very little fluctuation with a standard deviation of 0.0240. Overall, this pre process data is use to combine machine learning (ML) to improve prediction abilities for better bandwidth management and real-time handling in digital campus environments.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijaas.v14.i4.pp1433-1443

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Norakmar Arbain, Murizah Kassim, Darmawaty Mohd Ali, Shuria Saaidin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View the IJAAS Visitor Statistics

International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by Intelektual Pustaka Media Utama (IPMU) in collaboration with the Institute of Advanced Engineering and Science (IAES).