Feature Selection Using Evolutionary Functional Link Neural Network for Classification

Amaresh Sahu, Sabyasachi Pattnaik


Computational time is high for Multilayer perceptron (MLP) trained with back propagation learning algorithm (BP) also the complexity of the network increases with the number of layers and number of nodes in layers. In contrast to MLP, functional link artificial neural network (FLANN) has less architectural complexity, easier to train, and gives better result in the classification problems. The paper proposed an evolutionary functional link artificial neural network (EFLANN) using genetic algorithm (GA) by eliminating features having little or no predictive information. Particle swarm optimization (PSO) is used as learning tool for solving the problem of classification in data mining.  EFLANN overcomes the non-linearity nature of problems by using the functionally expanded selected features, which is commonly encountered in single layer neural networks. The model is empirically compared to MLP, FLANN gradient descent learning algorithm, Radial Basis Function (RBF) and Hybrid Functional Link Neural Network (HFLANN) . The results proved that the proposed model outperforms the other models.

Full Text:


DOI: http://doi.org/10.11591/ijaas.v6.i4.pp359-367


  • There are currently no refbacks.

International Journal of Advances in Applied Sciences (IJAAS)
p-ISSN 2252-8814, e-ISSN 2722-2594
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Web Analytics View IJAAS Stats